
© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Flexible Tables
 Where SQL meets semi-structured data

James Fraumeni and Ben Vandiver

Systems Software Engineer, Distributed Infrastructure, HP Vertica

April 23rd , 2014

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 2

And if we do all that, how’re we so small?

Who are we?

We‟re a start-up driving the biggest Silicon Valley tech company

Academic roots

• Founded in 2005 by Mike Stonebraker (MIT)

• “C-Store: A Column Oriented DBMS” (VLDB 2005)

• “The Vertica Analytic Database: C-Store 7 Years Later” (VLDB 2012)

Acquired by Hewlett-Packard in 2011

• HP was having trouble; we were busy being awesome so they left us alone

– They gave us lots of sweet hardware, though

• HP‟s now recovering; they‟re (very actively) asking us how we do it

Small group of highly competent engineers

• About 40 core developers today

• Small teams; big challenges; lots of freedom

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 3

What’s the big deal?

What do we enable?

Our tools power the world‟s big analytics shops

What if you knew, and could query in seconds…

• Every stock trade ever?

• Every phone call ever?

• Every tweet?

• Every gene in your genome?

Clusters of hundreds of machines, with tens of petabytes

 of data.

You can’t do that with MySQL.

Whose users want sub-second response times on

 real queries.

You can’t do that with Hadoop.

SELECT HEAT_MAP_IMAGE(lat, lon)

 OVER (PARTITION BY country)

 FROM tweets

 WHERE SENTIMENT(text) < -1;

Yep, we do that.

Vertica users

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 4

What is Vertica?

“MPP OLAP RDBMS”

• SQL Database for Real-time Analytics

• Runs on commodity x86_64 hardware

• MPP Columnar Architecture – scales to PBs!

• Easy to setup and use

• Extensive Ecosystem of analytic tools

“One cluster to rule them all…”

Speed

Scale

Simplicity

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 5

High Level Goals for Flexible Tables

• SQL Databases must

– Ingest semi-structured data easily

–Query it naturally

• Queries should be input-format agnostic (i.e., vanilla SQL

against relational tables)

• Vertica shows good results along this path

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 6

What is Semi-Structured Data?

Data that has structure, but that structure is:

Varying Non-Relational Unknown

A very “RDBMS” point of view

Table

A B C

A B C D

Table

A B C

Table

? ? ?

A B1

B2

B3

C
?

?
?

? ?
?

?

? ?
?

?

?
A C

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 7

A Semi-Structured Data Example:

Are German tweets longer than English tweets?

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 8

“Tweet child of mine”

Tweets: Raw Data

Twitter Public Streaming API

https://stream.twitter.com/1.1/statuses/sample.json

Contains tweets:
{"filter_level":"medium","contributors":null,"text":"Heading off to #HP TechCon!",
"geo":null,"retweeted":false,"in_reply_to_screen_name":null,"truncated":false,"lang":"en","entities":{"symbols":[],"urls":[],"hasht
ags":[{"text":"HP","indices":[15,18]}],"user_mentions":[]},"in_reply_to_status_id_str":null,"id":329595489773309952,"source":"web",
"in_reply_to_user_id_str":null,"favorited":false,"in_reply_to_status_id":null,"retweet_count":0,"created_at":"Wed May 01 13:57:43
+0000 2013", "in_reply_to_user_id":null,"favorite_count":0,"id_str":"329595489773309952“,"place":null,
"user":{"location":"Cambridge,
MA","default_profile":true,"statuses_count":1,"profile_background_tile":false,"lang":"en","profile_link_color":"0084B4","id":148363
627,"following":null,"favourites_count":0,"protected":false,"profile_text_color":"333333","description":"A database
guy.","verified":false,"contributors_enabled":false,"profile_sidebar_border_color":"C0DEED","name":"Ben
Vandiver","profile_background_color":"C0DEED","created_at":"Wed May 26 14:22:29 +0000
2010","default_profile_image":false,"followers_count":12,"profile_image_url_https":"https://si0.twimg.com/profile_images/3596493897
/a4056576ec72b18a6087213f46080eeb_normal.jpeg","geo_enabled":false,"profile_background_image_url":"http://a0.twimg.com/images/theme
s/theme1/bg.png","profile_background_image_url_https":"https://si0.twimg.com/images/themes/theme1/bg.png","follow_request_sent":nul
l,"url":null,"utc_offset":null,"time_zone":null,"notifications":null,"profile_use_background_image":true,"friends_count":4,"profile
_sidebar_fill_color":"DDEEF6","screen_name":"benvandiver","id_str":"148363627","profile_image_url":"http://a0.twimg.com/profile_ima
ges/3596493897/a4056576ec72b18a6087213f46080eeb_normal.jpeg","listed_count":0,"is_translator":false},"coordinates":null}

and delete markers:
{"delete":{"status":{"user_id":178172685,"id":257897002996727808,"user_id_str":"178172
685","id_str":"257897002996727808"}}}

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 9

Using a Relational Database

Define Schema

CREATE TABLE tweets(

 text varchar(140)

 “user.lang” varchar(10)

 …

);

Load Data

• Save tweets to disk

• Parse the JSON with Python to pull out

the desired output columns into delimited

format

•COPY tweets(text, “user.lang”) FROM

„/path/to/parsed.json‟

“Old skool”

Query

SELECT “user.lang”,

 AVG(LENGTH(text))

 FROM tweets

 GROUP BY “user.lang”;

(2000)

Pros and Cons

+ Easy to query

- Tricky to pick schema

- Awkward to load

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 10

Hadoop / Pig

Load Data

• Save tweets to disk

• “cp” directly into HDFS, as with a

file copy

Define Schema

• No need

“Going whole hog NoSQL”

Pros and Cons

+ No schema definition

+ Easy to load

- Trickier to query

- Degraded performance

Query

• Write some Pig:
register hdfs://…/user/benchmark/piggybank.jar

tweets = load 'hdfs://tweets.json' using JsonLoader() as (m:

Map[]);

twt_r1 = foreach tweets generate m#'text', m#'user';

twt_r2 = foreach twt_r1 generate LENGTH($0), $1#‟lang‟ as m;

twt_r3 = group twt _r2 by $1

avg_lengths = foreach twt_r3 generate $1as lang, AVG($0) as

text_len;

avg_lengths_ordered = order avg_lengths by text_len desc;

dump avg_lengths_ordered;

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 11

Alternative SQL approach: JSON in DB

Define Schema

CREATE TABLE tweets(
 contents VARCHAR(4096)
);

Load Data

• Save tweets to disk

• Break on JSON record boundaries

• COPY tweets(contents) FROM

„/path/to/parsed.json‟

“Passing the buck”

Query

SELECT json_value(contents,’user.lang’),

 AVG(LENGTH(json_value(contents,’text’))

FROM tweets

GROUP BY json_value(contents,’user.lang’);

Pros and Cons

+ Minimal schema definition

+ Simpler to load

- Query exposes JSON storage

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 12

“Here I stand…”

Database Principles

SQL is declarative:

Specify the what, database determines how

Agnostic of storage:

Same SQL, if DB is row-store, column-store,

compressed, loaded fixed-width or delimited, …

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 13

New approach: Flexible Tables

Define Schema

CREATE FLEX TABLE tweets();

Load Data

• Save tweets to disk

• COPY tweets() FROM

„/path/to/raw.json‟

“Look Ma, no columns!”

Query

SELECT “user.lang”,

 AVG(LENGTH(text))

 FROM tweets

 GROUP BY “user.lang”;

Pros and Cons

+ No schema definition

+ Simple to load

+ Easy to query

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 14

“SQL makes a world of difference”

Tools Integration

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 15

“Enabling ELT in addition to ETL”

Why Semi-Structured?

• Just toss the data in (data lake)

– Not worth putting the effort into discovering/defining schema when you‟re not

sure you‟ll ever use the data

• Postpone the decision of which columns and types are “important” in the source

data

• Allow for schema discovery while leveraging (a subset of) the benefits of the

Vertica System rather than forcing it to be known at load-time

• Allow for incremental transform into the final, desired form while keeping the

table usable

• Smooth out version/implementation differences in otherwise well-structured data

• Retain a SQL interface and its tools support, employee trainings, etc.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 16

Implementation

Objectives:

• Simple to use

• Vanilla SQL

• Format agnostic storage

• Minimal added database complexity

Components:

• Supporting FLEX tables

• Performance optimization

• Validation of approach

“The devil‟s in the details… and there are lots of details”

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 17

Flexible Tables

Store data in large binary column:

CREATE FLEX TABLE tweets();

is

CREATE TABLE tweets (

 __raw__ long varbinary

);

“I‟d like my table medium rare”

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 18

Flexible Tables: Parsing Semi-structured Data

JSON
MAP

KeyValue
Table

raw

Parse Serialize

JSON:

{

 “id”: 1,

 “name”: “ben”

}

Becomes a record:

{ “id” “1”, “name” “ben” }

Delimited with header row:

id,name

1,ben

2,jen

Becomes 2 records:

{ “id” “1”, “name” “ben” }

{ “id” “2”, “name” “jen” }

Delimited

???

Extensible with User

Defined Parsers

Avro, Protocol buffers,
Thrift, …

Fun Fact: Our JSON and

Delimited parsers are

actually user defined parsers

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 19

Flexible Tables: Supporting Vanilla SQL

Automatic Query Rewrite

SELECT text FROM tweets;

becomes:

SELECT MapLookup(__raw__,’text’)

 FROM tweets;

Implementation

• Vertica SQL-parser-level change

• Translates any column reference

• maplookup is null if key is

missing

“Column if you got „em!”

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 20

“Wish upon a falling *”

Flexible Tables: SELECT * FROM tweets

• What it probably means:

Return all the data as a relational table

• Bad choices:

– Return strings of JSON

• Must track provenance (could be delimited, avro, …)

• Useless to SQL tools

– Return rows with all keys as columns

• Requires full scan to compute columns

• Could result in millions of columns

• Loading data could invalidate consumer assumptions about schema

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 21

Flexible Tables: Column Metadata

Solution: build a view

• Compute set of available keys and strore in a

 keys table: compute_flextable_keys()

• Generate view from keys:

 build_flextable_view() /

 compute_flextable_keys_and_build_view()

• SQL Tools understand views

• Regenerate keys & view to expose new

schema to applications

• Can still access base flex table

Example:

Table people has rows:

{ name ben, hair blond }

{ name jen, eyes green }

SELECT * FROM people_view:

name | hair | eyes s

Ben | blond |

Jen | | green

“A view from the top”

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 22

Give me the text of all posts tagged “big data”

Handling Nested Structure: Exploding

{

 "postID": 52737,
 "posterID": 134028,
 "text": "Giving a talk on
Flexible Tables at Brandeis.",

 "tags":
 ["flex", "vertica", "hp", "big
data"],

 "replyPostsIDs":
 [52740, 52756, 52757, 52810]
}

SELECT text
 FROM posts
 WHERE 'big data' IN tags;

SELECT * FROM (SELECT
 text, MapItems(tags)
 OVER(PARTITION BY text, tags)
 FROM posts) innerPosts
 WHERE values = 'big data';

 text | keys | values
---+------+----------
 Giving a talk on Flexible Tables at Brandeis. | 3 | big data
(1 row)

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 23

“… may none of them be missed!”

Handling Nested Structure (Maps & Lists)

Maps get flattened

{

 “a”: 5,

 “b”: {

 “c”: 4,

 “d”: 7

 }

}

becomes

{ a 5, “b.c” 4, “b.d” 7 }

Lists become sub-maps

{

 “a”: [“red”, “green”]

}

becomes

{ a { 0 “red”, 1 “green” } }

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 24

Performance

• Likely in the “Big Data” arena – performance at scale matters

• Load is wonderfully parallel – each record is self-contained

• Query performance:

– Structure hidden inside __raw__ column

– SQL does not distinguish between real columns and virtual columns

– A column-store database is crucial

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 25

“My precious… Column! Column!”

Performance: Column-Store Basics

• Store each column‟s data separately, often sorted and compressed

• Benefits:

– Pay I/O cost only for columns referenced

– Late materialize columns after predicates or even joins

– Easy to add columns to a table

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 26

“Optimization via PowerPoint”

Performance: Flex Relational

CREATE TABLE tweets (

 __raw__ long varbinary,

 “user.lang” varchar(10),

 id int

)

ORDER BY “user.lang”;

Push-Button Process:

1. Column Materialization

DB tracks used columns

2. Database Designer

Optimizes physical layout

__raw__
Table: tweets

“user.lang” id

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 27

“Best of both worlds”

Performance: Hybrid Flex Tables

• Supports partial description

– Some parts of data fixed & known

– Improved performance

• Re-uses performance mechanisms

• SQL Query is identical

Partial Description

CREATE FLEX TABLE tweets(

 time timestamp,

 id int,

 “user.lang” varchar(20)

)

ORDER BY “user.lang”,time

SEGMENTED BY hash(id) ALL NODES;

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 28

Validation: Customers

Application
generates

data

Collect
customer

data
Analyze

“Finding pain points”

DBA
hacks

Schema,
ETL

Analysts
change
reports

Developer
changes

application

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 29

Validation: Customers
“Maze of twisty devices, all slightly different”

Device

v1.0

Mothership Device

v1.0

Device

v2.0

Device

v2.1.2

Device

v2.2.5

Device

v2.7.0

Device

v3.1 Device

v4.0

Device

v4.1

Device

v3.0

Example: HP Printers

Schema evolves, cannot change installed devices

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 30

Validation: Results

Usability

Case study: Vertica internal log tables

• Standard base columns (time,txnid,…)

• Variety of payload columns

• Columns vary between versions

• Stored in delimited format with

headers

Requirement

Simple load process which works

regardless of Vertica version

“Dogfooding”

Example: dc_transaction_ends table
 time | transaction_id | is_ddl | rows_written

-------------------------------+-------------------+--------+--------------

 2013-07-20 15:51:29.065174-04 | 45035996275768002 | f | 0

 2013-07-20 15:51:29.119749-04 | 45035996275768020 | t | 0

 2013-07-20 15:51:29.182637-04 | 45035996275768021 | t | 0

 2013-07-20 15:51:39.811272-04 | 45035996275768024 | f | 0

 2013-07-20 15:51:51.213977-04 | 45035996275768025 | f | 0

 2013-07-20 15:51:51.221161-04 | 45035996275768026 | t | 0

 2013-07-20 15:51:52.984709-04 | 45035996275768027 | t | 0

 2013-07-20 15:51:52.995551-04 | 45035996275768028 | t | 0

 2013-07-20 15:51:54.7341-04 | 45035996275768029 | f | 94

 2013-07-20 15:52:29.468858-04 | 45035996275768032 | t | 0

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 31

Validation: Results

Usage

For each log file:

• Create hybrid flex table

• Load file into table

No need for performance optimization:

Important columns already exist

CREATE FLEX TABLE dc_table (

 time timestamp,

 node_name varchar(100),

 session_id varchar(100),

 transaction_id int,

 statement_id int

)

ORDER BY

transaction_id,statement_id,node_name,time

SEGMENTED BY

hash(transaction_id,statement_id) ALL NODES;

“Hybrid table FTW!”

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 32

“I‟ll huff and I‟ll puff…”

Validation: Performance of Vertica Flex vs Pig

1

10

100

1000

10000

100000

Count Distinct Partition Top K Self Join Dimension Join Grouping

Q
u

e
ri

e
s

 p
e

r
h

o
u

r

Hadoop (Pig)

Vertica Flex

Vertica Optimized

Tweets: 100 hrs of samples, 38GB raw, 17 million rows – Cluster: 4 Nodes, 100GB

RAM, 8 cores

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 33

Validation: Effectiveness of Hybrid Tables

Cost to Store Column: 194 bytes!

SELECT text FROM tweets

 WHERE “user.lang” = ______

• All flex:

• scan all rows

• Materialize “user.lang”:

• scan “user.lang” first

• scan __raw__ for matching
0

0.5

1

1.5

2

Predicate (.002%
match)

Predicate (45%
match)

T
im

e
 i
n

 S
e
c
o

n
d

s

Performance Improvement
from Materializing a Predicate

Column

All Flex Predicate Column Materialized

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 34

Conclusions

Current State

• Support load, exploration, and

productization of semi-structured

data

• Provides vanilla SQL experience

key to ecosystem integration

• Push button performance

optimization with orders of

magnitude impact

• Shipped in Vertica 7.0 (Dec 2013)

Future Work

• Support additional formats

• Better algorithms

• View Generation

• Column Materialization

• Performance tuning

• Storage compression

• SQL Optimizer statistics

“What next?”

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 35

In case you hadn‟t guessed.

We‟re hiring!

Full-time and internship positions available!

We want intelligent, creative developers who aren‟t afraid to learn new stuff.

• Everything you just saw came out of some engineer‟s head.

• Are you someone like that? Want to work with people like that?

We‟ll help you find the right place at Vertica.

• Interview with (and get to know) your teammates

• We want people who know they want us

http://www.vertica.com/about/careers/ | http://www.vertica.com/blog/ | http://my.vertica.com/ |

https://vertica.hpwsportal.com/ | resumes@vertica.com

Artwork courtesy of openclipart.org

http://www.vertica.com/about/careers/
http://www.vertica.com/about/careers/
http://www.vertica.com/about/careers/
http://www.vertica.com/blog/
http://www.vertica.com/blog/
http://my.vertica.com/
https://vertica.hpwsportal.com/
mailto:resumes@vertica.com

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Thank you! Questions?

Try it yourself with Vertica Community Edition:
http://www.vertica.com/community
Full featured; first 2 terabytes are free!
 (1TB Flex, 1TB columnar)

Flex QuickStart Guide at:
http://my.vertica.com/docs/7.0.x/PDF/HP_Vertica_7.0.x_FlextablesQuickstart.pdf

Thanks to the whole Flex Crew:

Ben Vandiver, Shalu Tiwari, Kanti Mann,

Tina Hsu, Adam Seering, Derrick Rice,

Jason Slaunwhite, Sue Francis,

Lyric Doshi, Matt Fuller

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 37

Map Functions

Scalar Functions

• MapLookup(map,key) value

 or null if map does not contain key

• MapContainsKey(map,key) boolean

• MapSize(map) integer

Transform Functions (multi-row output)

• MapKeys(map) keys, one per row

• MapValues(map) values, one per row

Aggregate Functions

• MapAggregate(keys,values) map

…

Maps can stand in for arrays: use keys 0,1,2,…

Examples:

View the contents of a Flex map:

SELECT MapToString(__raw__) FROM

tweets;

Find all unique keys in a map column:

SELECT DINSTINCT key FROM

(SELECT MapKeys(__raw__) OVER() FROM

tweets) a;

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 38

How do I query nested objects?

Handling Nested Structure: Exploding

SELECT text, MapItems(tags)
 OVER(PARTITION BY text, tags)
 FROM posts;
 text | keys | values
---+------+----------
 Giving a talk on Flexible Tables at Brandeis. | 0 | flex
 Giving a talk on Flexible Tables at Brandeis. | 1 | vertica
 Giving a talk on Flexible Tables at Brandeis. | 2 | hp
 Giving a talk on Flexible Tables at Brandeis. | 3 | big data
(4 rows)

{

 "postID": 52737,
 "posterID": 134028,
 "text": "Giving a talk on
Flexible Tables at Brandeis.",

 "tags":
 ["flex", "vertica", "hp", "big
data"],

 "replyPostsIDs":
 [52740, 52756, 52757, 52810]
}

SELECT MapItems(tags)
 OVER(PARTITION AUTO)
 FROM posts;
 keys | values
------+----------
 0 | flex
 1 | vertica
 2 | hp
 3 | big data
(4 rows)

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 39

Customer Stories

Gaming Company Scenario

• Event data from games

• Load process:

• Repeat for every event type

• Events change: make new tables (tbl1

tbl2)

• Want to co-locate all events for a game

• All events have 8 known fields

“Of woe and tears”

Amazo

n

S3

Hadoop Python Vertica

Common Elements

Customer defines data to be collected

Customer loads & analyzes data in

Vertica

Adjusts collection over time

Not just gaming:

• Advertising

• Medical

• Web analytics

• …

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 40

Related Work

• Many customers do ETL to work around

• Postgres, Oracle, and other support JSON – but not in SQL

• Clustrix gets close, but keys don‟t look like columns

http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html

• XML databases – xpath queries aren‟t SQL

http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html
http://sergei.clustrix.com/2011/02/clustrix-as-document-store-blending-sql.html

